Diagramas de Venn
Dados dos conjuntos A y B:
 |
 |
 |
 |
$$A$$ |
$$\overline{A}$$ |
$$B$$ |
$$\overline{B}$$ |
 |
 |
 |
 |
$$A \cup B$$ |
$$A \cap B$$ |
$$A - B$$ |
$$B - A$$ |
Dados tres conjuntos A, B y C:
 |
 |
 |
 |
$$A$$ |
$$\overline{A}$$ |
$$B$$ |
$$\overline{B}$$ |
 |
 |
 |
 |
$$C$$ |
$$\overline{C}$$ |
$$A - B$$ |
$$A - C$$ |
 |
 |
 |
 |
$$B - A$$ |
$$B - C$$ |
$$C - A$$ |
$$C - B$$ |
 |
 |
 |
 |
$$A \cup B$$ |
$$A \cup C$$ |
$$B \cup C$$ |
$$A \cup B \cup C$$ |
 |
 |
 |
 |
$$A \cap B$$ |
$$A \cap C$$ |
$$B \cap C$$ |
$$A \cap B \cap C$$ |
Combinatoria
Números Combinatorios
$$\left\{\begin{array}{l}
\mathbf{\hbox{(Factorial de n) }} n! = n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1 \hbox{ , } \forall n \in \mathbb{N}\\
\\
\mathbf{\hbox{(Propiedades)}} \left\{\begin{array}{l}
n! = n \cdot (n-1)! \\
\\
0! = 1 \\
\end{array}\right.\\
\\
\mathbf{\hbox{(Número combinatorio) }} \hbox{Dados n, m} \in \mathbb{N},n \geq m, \displaystyle{\binom{n}{m}} = \displaystyle{\frac{n!}{m!(n-m)!}} \\
\\
\mathbf{\hbox{(Propiedades)}} \left\{\begin{array}{l}
\displaystyle{\binom{n}{0}} = 1, \displaystyle{\binom{n}{1}} = n, \displaystyle{\binom{n}{n}} = 1 \\
\\
\displaystyle{\binom{n}{m}} = \displaystyle{\binom{n}{n-m}} \\
\\
\displaystyle{\binom{n}{m}} + \displaystyle{\binom{n}{m+1}} = \displaystyle{\binom{n+1}{m+1}} \\
\end{array}\right.\\
\end{array}\right.
$$
Triángulo de Tartaglia (o de Pascal)
$$
\left.\begin{array}{l}
\left.\begin{array}{l}
& & & & 1 & & & & \\
& & & 1 & & 1 & & & \\
& & 1 & & 2 & & 1 & & \\
& 1 & & 3 & & 3 & & 1 & \\
1 & & 4 & & 6 & & 4 & & 1\\
& & & & \vdots & & & & \\
\end{array}\right.
& \Leftrightarrow &
\left.\begin{array}{l}
& & & & \displaystyle{\binom{0}{0}} & & & & \\
& & & \displaystyle{\binom{1}{0}} & & \displaystyle{\binom{1}{1}} & & & \\
& & \displaystyle{\binom{2}{0}} & & \displaystyle{\binom{2}{1}} & & \displaystyle{\binom{2}{2}} & & \\
& \displaystyle{\binom{3}{0}} & & \displaystyle{\binom{3}{1}} & & \displaystyle{\binom{3}{2}} & & \displaystyle{\binom{3}{3}} & \\
\displaystyle{\binom{4}{0}} & & \displaystyle{\binom{4}{1}} & & \displaystyle{\binom{4}{2}} & & \displaystyle{\binom{4}{3}} & & \displaystyle{\binom{4}{4}}\\
& & & & \vdots & & & & \\
\end{array}\right.\\
\end{array}\right.
$$
Combinatoria: Variaciones, Combinaciones y Permutaciones
$$
\left\{\begin{array}{l}
\hbox{Importa el orden}
\left\{\begin{array}{l}
\hbox{No entran todos } \mathbf{\hbox{(Variaciones)}}
\left\{\begin{array}{l}
\hbox{Sin repetición: } V_{n,k}=\displaystyle{\frac{n!}{(n-k)!}}=n \cdot (n-1) \cdots (n-k+1)\\
\hbox{Con repetición: } VR_{n,k}=n^k
\end{array}\right.\\
\\
\hbox{Entran todos } \mathbf{\hbox{(Permutaciones)}}
\left\{\begin{array}{l}
\hbox{Sin repetición: } P_n=n! = n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1\\
\hbox{Con repetición: } PR_n^{\alpha_1,\alpha_2,\cdots,\alpha_k}=\displaystyle{\frac{n!}{\alpha_1! \cdot \alpha_2!\cdots \alpha_k!}}
\end{array}\right.\\
\end{array}\right.\\
\\
\hbox{No importa el orden } \mathbf{\hbox{(Combinaciones)}}
\left\{\begin{array}{l}
\hbox{Sin repetición: } C_{n,k} = \displaystyle{\binom{n}{k}} = \displaystyle{\frac{n!}{(n-k)! \cdot k!}}\\
\hbox{Con repetición: } CR_{n,k} = C_{n+k-1,k} = \displaystyle{\binom{n+k-1}{k}} = \displaystyle{\frac{(n+k-1)!}{(n-1)! \cdot k!}}\\
\end{array}\right.\\
\end{array}\right.
$$
$$
\left.\begin{array}{l}
\mathbf{\hbox{ (Permutaciones circulares) }} PC_n=(n-1)!\\
\end{array}\right.
$$