Potencias de un binomio

$$ \mathbf{\hbox{(Casos particulares)}} \left\{\begin{array}{l} (a + b)^1 = (a + b) = a + b \\ (a - b)^1 = (a - b) = a - b \\ (a + b)^2 = (a + b)(a + b) = a^2 + 2ab + b^2 \\ (a - b)^2 = (a - b)(a - b) = a^2 - 2ab + b^2 \\ (a + b)^3 = (a + b)(a + b)(a + b) = (a + b)^2(a + b) = a^3 + 3a^2b + 3ab^2 + b^3 \\ (a - b)^3 = (a - b)(a - b)(a - b) = (a - b)^2(a - b) = a^3 - 3a^2b + 3ab^2 - b^3 \\ \end{array}\right.\\ $$

Binomio de Newton

$$ (a + b)^n = \binom{n}{0} a^{n}b^{0} + \binom{n}{1} a^{n-1}b^{1} + \binom{n}{2} a^{n-2}b^{2} + \cdots + \binom{n}{n-2} a^{2}b^{n-2} + \binom{n}{n-1} a^{1}b^{n-1} + \binom{n}{n} a^{0}b^{n} $$ $$ (a - b)^n = \binom{n}{0} a^{n}b^{0} - \binom{n}{1} a^{n-1}b^{1} + \cdots + (-1)^{n-1}\binom{n}{n-1} a^{1}b^{n-1} + (-1)^n\binom{n}{n} a^{0}b^{n} $$

Números Combinatorios

$$\left\{\begin{array}{l} \mathbf{\hbox{(Factorial de n) }} n! = n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1 \hbox{ , } \forall n \in \mathbb{N}\\ \\ \mathbf{\hbox{(Propiedades)}} \left\{\begin{array}{l} n! = n \cdot (n-1)! \\ \\ 0! = 1 \\ \end{array}\right.\\ \\ \mathbf{\hbox{(Número combinatorio) }} \hbox{Dados n, m} \in \mathbb{N},n \geq m, \binom{n}{m} = \frac{n!}{m!(n-m)!} \\ \\ \mathbf{\hbox{(Propiedades)}} \left\{\begin{array}{l} \binom{n}{0} = 1, \binom{n}{1} = n, \binom{n}{n} = 1 \\ \\ \binom{n}{m} = \binom{n}{n-m} \\ \\ \binom{n}{m} + \binom{n}{m+1} = \binom{n+1}{m+1} \\ \end{array}\right.\\ \end{array}\right. $$

Triángulo de Tartaglia (o de Pascal)

$$ \left.\begin{array}{l} \left.\begin{array}{l} & & & & 1 & & & & \\ & & & 1 & & 1 & & & \\ & & 1 & & 2 & & 1 & & \\ & 1 & & 3 & & 3 & & 1 & \\ 1 & & 4 & & 6 & & 4 & & 1\\ & & & & \vdots & & & & \\ \end{array}\right. & \Leftrightarrow & \left.\begin{array}{l} & & & & \binom{0}{0} & & & & \\ & & & \binom{1}{0} & & \binom{1}{1} & & & \\ & & \binom{2}{0} & & \binom{2}{1} & & \binom{2}{2} & & \\ & \binom{3}{0} & & \binom{3}{1} & & \binom{3}{2} & & \binom{3}{3} & \\ \binom{4}{0} & & \binom{4}{1} & & \binom{4}{2} & & \binom{4}{3} & & \binom{4}{4}\\ & & & & \vdots & & & & \\ \end{array}\right.\\ \end{array}\right. $$

Aplicación del Binomio de Newton al cálculo de derivadas

$$ \mathbf{\hbox{(Notación)}} \left\{\begin{array}{l} f^{(0}(x)=f(x)\\ f^{(1}(x)=\frac{Df(x)}{dx}=f'(x)\\ f^{(2}(x)=\frac{D^2f(x)}{dx^2}=f''(x)\\ \cdots\\ f^{(n}(x)=\frac{D^nf(x)}{dx^n}\\ \end{array}\right. $$

Derivada n-ésima del producto de dos funciones

$$ (f \cdot g)^{(n}(x) = \binom{n}{0} f^{(n}(x)g^{(0}(x) + \binom{n}{1} f^{(n-1}(x)g^{(1}(x) + \cdots + \binom{n}{n-1} f^{(1}(x)g^{(n-1}(x) + \binom{n}{n} f^{(0}(x)g^{(n}(x) $$ $$ \mathbf{\hbox{(Casos particulares)}} \left\{\begin{array}{l} (f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)\\ (f \cdot g)''(x) = f''(x) \cdot g(x) + 2f'(x) \cdot g'(x) + f(x) \cdot g''(x)\\ (f \cdot g)'''(x) = f'''(x) \cdot g(x) + 3f''(x) \cdot g'(x) + 3f'(x) \cdot g''(x) + f(x) \cdot g'''(x)\\ \end{array}\right.\\ $$

Aplicación del Binomio de Newton al cálculo de derivadas (Clica para mostrar)